Curriculum Objectives	Vocabulary			
- Safely use and explore a variety of materials, tools and techniques, experimenting with colour, design, texture, form and function; - Share their creations, explaining the process they have used;	Food	Something we eat to give us energy and helps us grow	Build	To make something larger or stronger
	tool	An object used to help us to do a job	Create	To make something
	materials	What objects are made from e.g. wood, paper, bricks	fix	To repair something
	evaluate	Deciding what is good about your	Problem-solve	Thinking of a way to over-

Links Across the Curriculum

Art-colour, texture

Science-food, materials, everyday objects

Disciplinary Knowledge / Skills

To understand that different tools can be used for different purposes

To understand that different structures can be made using different tools and materials

To understand that it is important to plan a design before we make it

To understand that different materials have different properties and can be used for different purposes

To understand that asking questions and revisiting plans can help you to improve your design and generate new ideas

To understand what some foods are called

To understand that creations can always be improved

Diversity in the Curriculum

- Create the Eiffel tower-French week
- Red nose day-making noses and red nose day biscuits
- Diwali-diva lamps
- Easter- decorating Easter eggs and creating Easter cards

Outcome	Character Traits	Stickability	WOW
Children will create basic structures, a snack and explore a variety of materials.	Ambitious Articulate Resilient Curious Kind Respectful	Recap key vocabulary and skills learnt	DT projects will be displayed on twitter account

Curriculum Objectives	Vocabulary			
- Safely use and explore a variety of materials, tools and techniques, experimenting with colour, design, texture, form and function; - Share their creations, explaining the process they have used;	Food	Something we eat to give us energy and helps us grow	Build	To make something larger or stronger
	tool	An object used to help us to do a job	Create	To make something
	materials	What objects are made from e.g. wood, paper, bricks	fix	To repair something
	evaluate	Deciding what is good about your product and what can be improved	Problem-solve	Thinking of a way to overcome a problem

Preparing for..

Substantive Knowledge / Key Knowledge

1. Selecting tools	Children will continue to develop the accuracy of their cutting skills. Children will continue to be able to self select a wider variety / different materials to create with. Children will experience different or more challenging tools e.g. hammers and sewing needles. Children will also access tools in different settings such as during Forest School sessions.
2. Structures	Learning to construct with a purpose in mind. Children will use building blocks and create junk models.
3. Range of materials	As part of continuous provision, children will have ever-changing materials to use to create with. Children will also develop their understanding when using different materials through more formal directed teaching e.g. making themed cards, making puppets, creating firework pictures, using sticks. As part of their Forest School learning, children will also use natural materials to build and create.
4. Problem-solving	Adults will support children to evaluate their creations using stem sentences such as, 'I really like...' 'I don't like...' 'If I made it again, I would change...'
5. Food and nutrition	Children will experience using different tools and ingredients regularly to create savoury and sweet food. Children will grow their own vegetables and have an understanding of where different foods come from. Children will know what constitutes a healthy or unhealthy choice.
6. Evaluation/discussion	Return to and build on their previous learning, refining ideas and developing their ability to represent them. Children will be given opportunities to discuss reasons that make activities safe or unsafe, for example hygiene, electrical awareness, and appropriate use of senses when tasting different flavourings.
	Children will learn about significant designers e.g. Elon musk (Tesla), Norman Foster (architect) and Tom Kerridge (Chef)
7. Design	Children will have the opportunities to draw and design things. Adults will facilitate conversation about what children are building / making to encourage children to articulate their design process and use questioning to extend the children's reasoning e.g. 'What does ... do?' 'How does that work?' 'Why have you put \qquad there?' 'I wonder what would happen if you...'

Themes

Food	Children to name some simple food e.g. apple, carrot. Explore the idea of healthy and unhealthy foods
Broadening horizons	Children will get the experience of putting theoretical learning into practise in the 'real world.'
Innovation	Children will select tools and techniques needed to shape, assemble and join materials they are using

Outcome	Character Traits	Stickability	WOW
Children will create basic structures, prepare food, sew the outline of an animal and explore a range of materials.	Ambitious Articulate Resilient Curious Kind Respectful	Recap key vocabulary and skills learnt	

Links Across the Curriculum

Art-colour, texture

Science-food, materials, everyday objects

Disciplinary Knowledge / Skills

To understand that different tools can be used for different pur poses

To understand that different structures can be made using different tools and materials

To understand that different materials have different properties and can be used for different purposes

To understand that asking questions and revisiting plans can help you to improve your design and generate new ideas

To understand what some foods are called and what some foods can be used for. To know some healthy and unhealthy foods.

To understand that creations can always be improved

To understand

it

Diversity in the Curriculum

- To make masks for Chinese New Year
- Bake Easter cakes
- Design and make a prayer mat-Eid
- Create the Eiffel tower-French week
- Diva lamps-Diwal
- Design henna patterns-Diwali

Autumn Year 1 - Design and Technology

Chop, Slice and Mash (School Days) \propto

Spring Year 1 - Design and Technology - Taxi (Bright Lights, Big City)

Curriculum Objectives	Vocabulary			
- To learn about wheels, axles and chassis and how they work together to make a vehicle move.	axle	A rod or spindle passing through the centre of a wheel	Strength	The positives and effectiveness of the product
	chassis	The base frame of a car	weakness	The negatives of the product
	wheel	A circular object that spins on an	Vehicle	a machine with wheels and an en-
	rod	A thin straight bar	Taxi	a car with a driver who you pay to
	spindle	A thin, rounded rod	construction	To build something

Lessons Sequence

Substantive Knowledge / Key Knowledge

1. Can you explore different moving objects and identify the wheels, chassis and axles on each?
2. To learn about the famous mechanical engineer-Henry Ford
3. Can you create a moving vehicle using construction kit?
4. Can you create a moving vehicle prototype?
5. Can you design a London taxi model vehicle?
6. Can you make a London taxi?
7. Can you evaluate your model?

The children will learn that a wheel is a circular object that is connected to an axle that makes vehicles and machines move. An axle is a rod that is connected to the centre of a wheel, which allows it to turn. A chassis is the frame of a vehicle.

Children to learn about the significant inventor Henry Ford. Who is Henry Ford? What did he invent?

The children will learn that an axle is a rod or spindle that passes through the centre of a wheel to connect two wheels. Most vehicles that move on land have axles and wheels that are fixed to a chassis

The children will learn that axles and wheels can be attached to chassis in different ways: an axle fixed to a chassis has freely moving wheels, whereas a freely moving axle has fixed wheels.

The children will learn that a design criteria are the explicit goals that a project must achieve
The children will learn that an axle is a rod or spindle that passes through the centre of a wheel to connect two wheels.

The children will learn that a strength is a good quality of a piece of work. A weakness is an area that could be improved.

Themes

Food	
Broadening horizons	
Innovation	Children will learn about new materials and their functions-axles, chassis, spindles, wheels and rods. Children will fit more complex parts together with a clear purpose of creating a product. They will evaluate their product in more detail

Outcome	Character Traits	Stickability	WOW
To create a London taxi model	Articulate Resilient Curious	Recap key vocabulary and skills learnt	Engage children with a selection of everyday objects that can be 'push and pulled' e.g. skateboard, toy cars \& suitcase. Allow them to explore how they move.

Disciplinary Knowledge / Skills

Links Across the Curriculum

Geography-bright lights, big city they are used.

Use wheels and axles to make a simple moving model

Describe the similarities and differences between two products.

Create a design to meet simple design criteric

Use wheels and axles to make a simple moving model.

Talk about their own and each other's work, identifying strengths or weaknesses and offering support

Diversity in the Curriculum

- Discuss how transport can be iconic and symbolical of dif ferent places, cities and countries
- Discuss the symbolism of the London black cab
- Henry Ford-American inventor/mechanical engineer

summer Year 1 - Design and Technology

- Shade and shelter (School Days)

Curriculum Objectives

- To learn about the purpose of shelters and their materials.
Name and describe shelters and design and make shelter proto-
types. Children then design and build a play den as a group and
evaluate their completed product.

Vocabulary

shelter	Shelters are what people and ani- mals use to protect themselves from their surroundings.	difference	Things that are not the same
shade	To be sheltered from sunlight and heat	Similarity	Things that are the same or close to the same
den	A shelter or hiding place	Temporary	Lasting for only a short amount of time
Strength	Something that is strong	prototypre	An original model which designers take their ideas from

Lessons Sequence

Substantive knowledge/Key Knowledge

1.Do you know what a shelter is?
 2.Can you identify and describe different materials?

3. Can you design a temporary outdoor shelter?
4. Can you build an outdoor shelter prototype model?

5. Can you design and build an

 outdoor den?6. Can you evaluate your shelter

Children will learn that two products can be compared by looking at a set of criteria and scoring both products against each one. Children will learn shelter is a structure designed to give protection from weather or danger. A shelter can be permanent, like a house or garage,

A material is what an object is made from. Everyday materials include wood, plastic, glass, metal, water, rock, brick, paper and fabric.

Children will design purposeful, functional, appealing shelter for themselves and other users based on design criteria. Children will generate, develop, model and communicate their ideas through talking and drawing. Design criteria are the explicit goals that a project must

Children will learn that a structure should have strong, sturdy supports that are joined so that they do not move. The roof and walls should have a covering for protection against the weather, and there should be an entry point.

Children will learn that rules are made to keep people safe from danger. Safety rules include always listening carefully and following instructions, using equipment only as and when directed, wearing protective clothing if appropriate. Children will learn that different materials can be used for different purposes, depending on their properties. For example, cardboard is a stronger building material than paper. Plastic is light and can float. Clay is heavy and will sink.

Children will learn that a strength is a good quality of a piece of work. A weakness is an area that could be improved

Themes

Food

Broadening horizons
Children will get the experience of putting theoretical learning (material and their properties) into practise in the 'real world.' Children will explore the outdoors and collect materials based on their properties. Children will problem solve and express their creativity through the designing and building of

Children will learn about the purpose of different shelters. They will explore different materials and problem solve to decide which materials are best fitted for the purpose of a shelter.

Outcome	Character Traits	Stickability	WOW
To build a temporary outdoor shelter	Ambitious Articulate Resilient respectful	Recap key vocabulary and skills learnt	Shelter spotting activity

Links Across the Curriculum

History-School days

Science-materials and their properties Forest school link

Disciplinary Knowledge / Skills

Describe the similarities and differences between two products Name and explore a range of everyday products and describe how they are used. Advancement
Identify and name what an object is made from, including wood, plastic, glass, metal, water and rock. Explain why particular materials are used for different shelters.

Create a design to meet simple design criteria. Evaluate their own designs.
Construct simple structures, models or other products using a range of materials. Select and use a range of materials, beginning to explain their choices.

Follow the rules to keep safe during a practical task. Construct simple structures, models or other products using a range of ma-

Talk about their own and each other's work, identifying strengths or weaknesses and offering support.

Diversity in the Curriculum

- To look at different types of shelters from around the world

Autumn Year 2 - Design and Technology - Remarkable Recipes (Movers and Shakers)

Curriculum Objectives

- To learn about sources of food and tools used for food preparation. They also discover why some foods are cooked and learn to read a simple recipe. The children choose and make a new school meal that fulfils specific design criteria.

Vocabulary			
hygiene	definition	poultry	Chickens, geese and ducks raised for meat
Healthy food	Food that gives you all the nutri- ents and vitamins you need	germs	A microorganism that causes dis- ease
bacteria	A microorganism that causes dis- ease	pork	Meat from pigs
ham	Meat from pigs	recipe	A set of instructions for prepar- ing a meal or making a food

Lessons Sequence

1. Do you know different ways to prepare ingredients?

2. Where does our food come

 from?3. Why do we cook our food?
4. How do we read a recipe?

5. How do we plan a school meal?

6. How do we present a school
7. Did the meal fulfil the design

Substantive Knowledge / Key Knowledge

Children will learn that different tools have characteristics that make them suitable for specific purposes. For example, scissors are used for cutting paper because they have sharp, metal blades that can cut through thin materials. Some ingredients need to be prepared skins: grating hard ingredients, such as cheese or chocolate: chopping vegetables, such as onions and peppers and slicing fuch as potato bread and apples.
Children will learn that food comes from two main sources: animals and plants. Cows provide beef, sheep provide lamb and mutton and pigs provide pork, ham and bacon. Examples of poultry include chickens, geese and turkeys. Examples of fish include cod, salmon and vegetables come from plants. Oils are made from parts of plants. Sugar is made from plants called sugar cane and sugar beet. Plants also give us nuts, such as almonds, walnuts and hazelnuts.
Children will learn that some foods, such as ice and chocolate, melt when heated, but then harden (solidify or freeze) when cooled.
Children will learn about personal hygiene and germs including bacteria, viruses, how they are spread and treated, and the importance of handwashing. Ideas can be communicated in a variety of ways, including written work, drawings and diagrams, modelling, speaking and using information and communication technology. Hygiene rules include washing hands before handling food, cleaning surfaces, tying long hair back, storing food appropriately and wiping up spills.

Children will learn that many key individuals have helped to shape the world. These include engineers, scientists, designers, inventors and many other people in important roles. School kitchen staff are important people because they provide healthy, nutritious, appealing and

Children will learn to use the basic principles of a healthy and varied diet to prepare dishes. They will learn that a healthy diet should

Children will learn that their finished products can be compared with design criteria to see how closely they match. Improvements can

Themes

Children learnt in Y1 about where food comes from. Children have already learnt about some different tools used in food preparation. Children have a basic understanding of 'healthy foods' and unhealthy foods. Children will learn that many key individuals have helped to shape the world. These include engineers, scientists, designers, inventors and many other people in important roles. School kitchen staff are important people because they provide healthy, nutritious, appealing and balanced meals. Children will look more in depth at where different foods come from, why food is cooked and they will read simple recipes.
Broadening horizons
Innovation

Outcome	Character Traits	Stickability	WOW
To prepare and make a school meal.	Ambitious Articulate Curious	Recap key vocabulary and skills learnt	Big question-use pictures and see if the children can guess where foods come from-e.g. beefcow, pork-pigs

Disciplinary Knowledge / Skills

Select the appropriate tool for a task and explain their choice. Prepare ingredients by peeling, grating, chopping and slicing.

Identify the origin of some common foods (milk, eggs, some meats, common fruit and vegetables)

Observe what happens when a range of everyday materials, including foods, are heated and cooled, sorting and grouping them based Generate and communicate their ideas through a range of different methods. Work safely and hygienically in construction and

Explain why a designer or inventor is important. Generate and communicate their ideas through a range of different methods Describe the types of food needed for a healthy and varied diet

Explain how closely their finished products meet their design cri-

Diversity in the Curriculum

Jamie Oliver-British chef
Curriculum Objectives

- To learn about different types of mechanism: sliders, levers and linkages. They make models of each mechanism before designing and making a moving picture based on the seaside.

slider	a rigid bar which moves backwards and forwards along a straight line.	slot	A long, narrow opening
lever	a bar used to pry or move some- thing.	linkage	a system of links that are joined together to change movement.
Mechanism	a system or structure of moving parts that performs a particular function, especially in a machine	Force	an action that changes or main- tains the motion of a body or ob- ject.

Lessons Sequence

1. Can you explore different machines and mechanisms and dis-
2. Can you create a slider mechanism?
3. Can you create a lever mechanism?
4. Can you make a linkage mechanism?
5. Can you design an 'under the sea' or 'seaside' moving picture?
6. Can you create an 'under the sea' or 'seaside' moving picture?
7. Can you evaluate your completed moving picture?

Substantive Knowledge / Key Knowledge

People build machines to make their work easier. A machine is made up of different parts that all work together to perform a task. Individual parts of a machine are called components. The part that brings about movement is called the mechanism.

A mechanism is a device that takes one type of motion or force and produces a different one. A mechanism makes a job easier to do. A slider mechanism moves in a straight line. This can be up and down or from side to side. It is made up of a slider and slider support to direct the movement. Real-life examples of slider mechanisms include door bolts and drawers.

A lever mechanism is a bar that moves around a fixed point called a pivot. The amount of movement depends on the position of the pivot. Levers move an object in an arc shape. Real-life uses of levers include scissors and seesaws.

A linkage mechanism combines levers and sliders. It consists of two or more bars joined together by pivots. Fixed pivots attach the linkage mechanism to a fixed base to keep the joint still. Moving pivots join two bars together, but the bars can still move freely. Reallife uses of linkages include toolboxes and scissor lifts.

Products can be improved in different ways, such as making them easier to use, more hardwearing or more attractive.

Moving mechanisms are made using stiff materials, such as card, plastic or metal, so as not to bend or break when force is applied. Materials should be cut, joined and finished carefully and appropriately to make sure the product works, looks appealing and achieves the design criteria.
Finished products can be compared with design criteria to see how closely they match. Improvements can then be planned.

Themes

\section*{| Food |
| :---: |
| Broadening horizons |}

Innovation

Outcome	Character Traits	Stickability	WOW
Children will complete a moving picture (under the sea or seaside themed)	Articulate Resilient Curious	Recap key vocabulary and skills learnt	Engage children with the video of different machines and mechanisms.

Links Across the Curriculum
Geography-coastline

Disciplinary Knowledge / Skills

Use a range of mechanisms (levers, sliders, wheels and axles) in models or products.
Use a range of mechanisms (levers, sliders, wheels and axles) in models or products. Make models with moving parts.

Use a range of mechanisms (levers, sliders, wheels and axles) in models or products. Make models with moving parts.

Use a range of mechanisms (levers, sliders, wheels and axles) in models or products. Make models with moving parts.

Explain how an everyday product could be improved.
Choose appropriate components and materials and suggest ways of manipulating them to achieve the desired effect.

Explain how closely their finished products meet their design criteria and say what they could do better in the future.

Diversity in the Curriculum

- Children to base on 'the great British seaside'

summer Year 2 - Design and Technology
 - Cut, stitch and join (Magnificent Monarchs)

Rusicitivad

Themes

Food	
Innovation	In different contexts Children will practise and create a running stitch. Children will create an embellishment.
Broadening horizons	Children will learn about tapestry and explore it's history and significance.

Outcome	Character Traits	Stickability	WOW
Children to create a royal portrait tapestry wall hanger background (to combine with art portraits \& poses-paint portrait onto)	Ambitious Articulate Resilient Curious	Recap key vocabulary and skills learnt	Engage children by displaying a variety of different tapestry art. Display tapestries in a gallery.

Autumn Year 3 - Design and Technology-Cook well, Eat well (Through the ages) $£$

Curriculum Objectives

- To learn about food groups and the Eatwell guide. They learn about methods of cooking and explore these by cooking potatoes and ratatouille. The children choose and make a taco filling according to specific design criteria.

dice	To cut foods into small squares	roast	To cook something in oil in the dry heat of an oven.
fry	To cook something in hot oil.	bake	To heat in an oven
marinate	To leave foods in a mixture, usually containing herbs and spices, before cooking to add extra flavour.	grill	To heat on a grill
drizzle	To pour liquid slowly over something.	nutrients	the substances in food that our bod- ies process to enable it to function

Links Across the Curriculum

Geography-food harvesting and climate PSHE-Health eating

Disciplinary Knowledge / Skills

Identify the main food groups (carbohydrates, protein, dairy, fruits and vegetables, fats and sugars). Describe how key events in design and technology have shaped the world. Explain the importance and characteristics of a healthy, balanced diet

Use appliances safely with adult supervision. Prepare and cook a simple savoury dish.

Prepare and cook a simple savoury dish

Develop design criteria to inform a design. Identify and name foods that are produced in different places.

Prepare and cook a simple savoury dish

Suggest improvements to their products and describe how to implement them, beginning to take the views of others into account

Diversity in the Curriculum

Tasting food from different countries of origin- Mexico and Italy Martha Ortiz (Mexican)

Outcome	Character Traits	Stickability	WOW
To design and make a taco filling of their choice.	Articulate Curious	Recap key vocabulary and skills learnt	Food group-sorting cards. Assess what they may already know and then talk through.

Spring Year 3 - Design and Technology

- Making it move

Curriculum Objectives

- To learn about cam mechanisms. They experiment with different shaped cams before designing, making and evaluating a child's automaton toy. Explore the work of a well-known toy maker.

Vocabulary

sliders	a rigid bar which moves backwards and forwards along a straight line	axles	A rod or spindle passing through the cen- tre of a wheel
levers	a fixed bar used to move a heavy load	wheels	A circular object that spins on an axle
linkages	a system of links that are joined together to change movement.	cam	
Machine		Mechanism	

Lessons Sequence

1. Can you construct a simple mechanism model and describe how its parts create movement?
2. Can you learn about a significant toy maker? - Ron Fuller 2. Can you make a simple cams mechanism?

3. Can you predict and test the
movement of different shaped
cams?
4. Can you design a volcano auto- mated toy?
5. Can you create a volcano auto- mated toy?
6. Can you evaluate your automat- ed toy?

movement of different shaped cams?
4. Can you design a volcano automated toy?
ed toy?

Substantive Knowledge / Key Knowledge
Children to learn that levers consist of a rigid bar that rotates around a fixed point, called a fulcrum. They reduce the amount of work needed to lift a heavy object. Sliders move from side to side or up and down, and are often used to make moving parts in books. Axles are shafts on which wheels can rotate to make a moving vehicle. Cams are devices that can convert circular motion into up-and-down motion.
Children to learn about the automata toy maker-Ron Fuller (toy designer). Who is he? What did he make?
Children to learn that different tools can be used for specific purposes. Levers consist of a rigid bar that rotates around a fixed point, called a fulcrum. They reduce the amount of work needed to lift a heavy object. Sliders move from side to side or up and down, and are often used to make moving parts in books. Axles are shafts on which wheels can rotate to make a moving vehicle. Cams are devices that can convert circular motion into up-and-down motion. Cam mechanisms consist of an axle, a cam and a follower. The cam is fixed to the axle and the follower sits on the cam. When the axle is rotated, the follower moves up and down, following the shape of the cam. Cams are used

Children to learn that different shaped cams produce different patterns of movement in the follower. A pear cam makes the follower stationary for half a turn, then it gently rises and falls. It is used for carousel horses. An off-centre circular cam produces a smooth, continuous up and down movement. It is used for steam engine pistons. A heart cam makes a jerky, irregular up and down movement. A snail cam makes the follower stationary for half a turn, then gently rise and quickly fall.
Children to learn that different materials for a specific task must be selected on the basis of their properties. These include physical properties as well as availability and cost. Automata are machines that seem to move on their own and are intended to intrigue and delight an audience.
Children to learnt that specific tools can be used for cutting, such as saws. Wood can be joined using glue, nails, staples, or a combination of these. Safety rules must be followed to prevent injury from sharp blades. These rules include using a bench hook to keep the wood still, using a junior hacksaw with a pistol grip and working under adult supervision.
Children to learn that asking questions can help others to evaluate their products, such as asking them whether the selected materials achieved the purpose of the model.

Disciplinary Knowledge / Skills

Explain how an existing product benefits the user. Explore and use a range of mechanisms (levers, sliders, axles, wheels and cams) in models or products

To be able to explain the significant work of a famous designer
Use tools safely for cutting and joining materials and components. Explore and use a range of mechanisms (levers, sliders, axles, wheels and cams) in models or products.

Explore and use a range of mechanisms (levers, sliders, axles, wheels and cams) in models or products.

Develop design criteria to inform a design. Plan which materials will be needed for a task and explain why.

Suggest improvements to their products and describe how to implement them, beginning to take the views of others into ac count. Use tools safely for cutting and joining materials and components. Make working models with simple mechanisms or electrical circuits

Suggest improvements to their products and describe how to implement them, beginning to take the views of others into account.

Diversity in the Curriculum

Geography-rocks, relics and rumbles

Summer Year 3 - Design and Technology

Curriculum Objectives	Vocabulary			
- To learn about the purpose, structure and design features of greenhouses, and compares the work of two significant greenhouse designers. They learn techniques to strengthen structures and use tools safely. They use their learning to design and construct a mini greenhouse.	Appearance	The way something looks	greenhouse	A building with glass walls and a class roof
	frame	A basic shape that outlines a structure	investigate	To look carefully and closely as to learn facts
	structure	Anything made up of parts held together in a particular way.	strengthened	To gain strength; grow stronger

Lessons Sequence

1. Can you investigate how dif ferent products are designed for different purposes?
2. Can you compare the work of two significant greenhouse designers?
3. Can you create a strengthened frame structure?
4. Can you use tools safely to cut and join materials?
5. Can you explore different materials and select the best material for building your green-
6. Can you design a mini greenhouse?
7. Can you evaluate your greenhouse?

Key Knowledge

Children will learn that particular products have been designed for specific tasks, such as nail clippers, the spinning top and the cool box. Children will learn that a greenhouse is a building where plants can grow in a warm and protected environment. Greenhouses let light in through transparent or translucent walls and roofs. Windows, vents or fans provide ventilation.
Children will learn about Sir Joseph Paxton (designer of the great conservatory-Chatsworth house) and Sir Nicholas Grimshaw (designer of biomes at the Eden project.)

Children will learn that Shell structures are hollow, 3-D structures with a thin outer covering, such as a box. Frame structures are made from thin, rigid components, such as a tent frame. The rigid frame gives the structure shape and support. Diagonal struts can strengthen the structure. Diagonal struts create triangular shapes within a frame structure. Adding diagonal struts adds strength and stability. Diagonal struts create triangular shapes within a frame structure. Adding diagonal struts adds strength and stability.

Children will learn that Specific tools can be used for cutting, such as saws. Wood can be joined using glue, nails, staples, or a combination of these. Safety rules must be followed to prevent injury from sharp blades. These rules include using a bench hook to keep the wood still, using a junior hacksaw with a pistol grip and working under adult supervision. A hot glue gun can join materials, including wood, some

Children will learn that Materials for a specific task must be selected on the basis of their properties. These include physical properties as well as availability and cost. Children will learn that Materials, such as glass and plastic are suitable for making greenhouse roofs and walls because they are transparent, waterproof and hardwearing

Children will learn that the design criteria are the exact goals a project must achieve to be successful. These criteria might include the product's use, appearance, cost and target user

Asking questions can help others to evaluate their products, such as asking them whether the selected materials achieved the purpose of

Curriculum Objectives

- To learn about food decay and preservation. They discover key inventions in food preservation and packaging, then make examples. The children prepare, package and evaluate a healthy snack.

preserving	To maintain something	bacteria	A type of microorganism . Some can be
microorganisms	Living things too small not to be seen with	food poisoning	An illness caused by eating contaminated
pasteurising	Milk is heated too a high temperature to kill the microor- ganisms and then auichly cooled.	fungi	Group of living things; mushroom, mould
drying	Moisture is removed from foods, which stops microorganisms from growing.	pickling	Food is placed in a liquid, such as vinegar or brine, that prevents oxygen from reaching microorganisms in the food.
salting	Foods are covered with salt, which removes moisture so that microorganisms cannot grow.	canning	Foods are sealed in cans, which are heated to kill the microorganisms in the food.

Lessons Sequence

1. Why was the 'use by' date invented?
2. How does food packaging help to preserve and protect food? 3. What types of food could your packaging be used for?
3. What makes a snack healthy?
4. How can a healthy snack be packaged?
5. Did your packaging keep the

Substantive Knowledge / Key Knowledge

They will learn that food packaging plays an important role in keeping foods fresh. The 'use by' date shows when the food is no longer safe to eat. The 'best before' date They will earn that food packaging plays an important role in keeping fod
shows the date after which the food will lose some flavour or texture.

Children will learn that significant designers and inventors can shape the world. Design features are the aspects of a product's design that the designer would like to emphasise, such as the use of a particular material or feature that makes the product easier to use or more durable. Particular areas of the world have conditions suited to growing certain crops, such as coffee in Peru and citrus fruits in California in the United States of America.
Children will learn that most cardboard packaging is produced from a net. Packages can be strengthened by using thicker cardboard or multiple layers. A prototype is a mock -up of a design that will look like the finished product but may not be full size or made of the same materials. Shell and frame structures can be strengthened by gluing several layers of card together, using triangular shapes rather than squares, adding diagonal support struts and using 'Jinks' corners (small, thin pieces of card cut into a right-angled triangle and glued over each joint to straighten and strengthen them). Annotated sketches and exploded diagrams show specific parts of a design, highlight

Children will learn that cooking techniques include baking, boiling, frying, grilling and roasting. Healthy snacks include fresh or dried fruit and vegetables, nuts and seeds, rice cakes with low-fat cream cheese, homemade poph fror chopped containing eggs, meat, fish or cheese, a piece of fresh fruit a low-sugar yoghurt, rice cake or popcorn and a drink, such as water or semi-skimmed milk.

Children will learn that different materials and components have a range of properties, making them suitable for different tasks. It is important to select the correct maChildren willearn that different marerials and components have a range of properties, making them suitable for different tasks. It is important to select the correct ma-
terial or component for the specific purpose, depending on the design criteria. Recipe ingredients have different tastes and appearances. They look and taste better and are cheaper when in season. Healthy snacks include fresh or dried fruit and vegetables, nuts and seeds, rice cakes with low-fat cream cheese, homemade popcorn or are cheaper when in season. Healthy snacks include fresh or dried fruit and vegetables, nuts and seeds, rice cakes with low-fat crearm cheese, homemade popcorn or
chopped vegetables with hummus. A healthy packed lunch might include a brown or wholemeal bread sandwich containing eggs, meat, fish or cheese, a piece of fresh fruit, a low-sugar yoghurt, rice cake or popcorn and a drink, such as water or semi-skimmed milk. Foods need packaging to keep them fresh, safe to eat and free from damage. Food
packaging also provides nutritional information about the food inside, 'use by' and 'best before' dates, and the materials and recyclability of the packaging. packaging also provides nutritional information about the food inside, 'use by' and 'best before' dates, and the materials and recyclability of the packaging.
Children will learn that chemicals are used in the home every day. They include cleaning products, such as bleach and disinfectant, but also paints, glues, oils, pesticides and medicines. Most chemical products carry a hazard symbol showing in what way the chemical could be harmful. Chemicals should only be used under adult supervision. Appropriate safety precautions, such as wearing goggles and gloves, working in a well-ventilated room, wiping up spills and tying back long hair, should be taken. Healthy snacks include fresh or dried fruit and vegetables, nuts and seeds, rice cakes with low-fat cream cheese, homemade popcorn or chopped vegetables with hummus. A healthy packed
lunch might include a brown or wholemeal bread sandwich containing eggs, meat, fish or cheese, a piece of fresh fruit, a low-sugar yoghurt, rice cake or popcorn and a drink,

Evaluation can be done by considering whether the product does what it was designed to do, whether it has an attractive appearance, what changes were made during the

Themes

Food \quadChildren will now They need to product is incl	Children will now start to think about food storage and how we keep food fresh. Children will create a healthy snack and also create packaging for this. They need to consider the buyer and how they can attract the buyer to their product but also need to make sure that key information for the food product is included on the packaging.		
Broadening horizons			
Innovation			
Outcome	Character Traits	Stickability	WOW
To make and package a healthy snack.	Curious Articulate	Recap key vocabulary and skills learnt	Show a range of food packaging

Links Across the Curriculum

Maths-nets for 3D shapes

History-how significant designers throughout history have de signed different way in which to store and preserve food Geography-different climates are suited to different fiood growth

Disciplinary Knowledge / Skills

Explain how and why a significant designer or inventor shaped the world.
Investigate and identify the design features of a familiar product. Explain how and why a significant designer or inventor shaped the world. Identify and name foods that are produced in different places in the UK and beyond.
Use annotated sketches and exploded diagrams to test and communicate their ideas. Prototype shell and frame structures, show ing awareness of how to strengthen, stiffen and reinforce them.
Identify and use a range of cooking techniques to prepare a simple meal or snack. Design a healthy snack or packed lunch and explain why it is healthy
Design a healthy snack or packed lunch and explain why it is healthy. Choose from a range of materials, showing an under standing of their different characteristic.

Work safely with everyday chemical products under supervision, such as disinfectant hand wash and surface cleaning spray. Design a healthy snack or packed lunch and explain why it is healthy.

Identify what has worked well and what aspects of their products could be improved, acting on their own suggestions and those of others when making improvements

Diversity in the Curriculum

Ancient Egypt-food drying

French inventor - Nicolas Appert
Scottish scientist, William Cullen American inventor-Jacob Perkins French chemist - Louis Pasteur

Nadiya Hussein

Primary School

spring Year 4 - Design and Technology

Vocabulary			
Fabric	a cloth made by knitting or weav- ing together fibres.	Polyester	A synthetic material
Natural	Not made by humans	Silk	Natural, soft material
Synthetic	Made by humans	Hem	A border of a cloth made by fold- ing back an edge and sewing it down.
Running stitch	a simple needlework stitch con- sisting of a line of small even stitches which run back and forth through the cloth	sewing	Using a needle and thread to at- tach pieces of fabric together

Lessons Sequence

1. Can you explore different fabrics and explain their properties
2. Can you explore and discuss the design features of everyday products?
3. Who is William Morris?

Can you create a William Morris inspired block print?
5 Can you design a William Morris inspired fabric?
Can you create a William Morris inspired fabric?
7. Can you sew a hem?

Can you create an embroidery embellishment?
9. Cab you evaluate your product?

Children will learn that a comparison table can be used to compare products by listing specific criteria on which each product can be judged or scored Fabrics can be natural or synthetic. Natural fabrics include cotton, silk and wool. Synthetic fabrics include Lycra, polyester and nylon.
Children will learn that design features include purpose and function, appearance, quality, material, size, colour, pattern, embellishment, durability and usability.
Children will learn that William Morris was a British textile designer, artist and socialist activist associated with the British Arts and Crafts Movement. He was a significant contributor to the revival of traditional British textile arts and methods of production.
Children will learn that block printing techniques and fabric paint are used to create decorative, repeated patterns on fabrics. Different printmaking techniques include monoprinting, engraving, etching, screen printing and lithography
Children will learn that annotated sketches and exploded diagrams show specific parts of a design, highlight sections or show functions. They communicate ideas in a visual, detailed way
Children will learn that useful tools for cutting include scissors, craft knives, junior hacksaws with pistol grip and bench hooks. Useful tools for joining include glue guns. Tools should only be used with adult supervision and safety rules must be followed. Joining tools to use with fabric include needles, pins and clips, cutting tools include a variety of scissors such as pinking shears, finishing tools include an iron and ironing board. Joining tools to use with fabic include needles, pins and clips, cutting tools include a variety of scissors such as pinking shears, finishing tools include an iron and ironing board.
Children will learn that a hem runs along the edge of a piece of cloth or clothing. It is made by turning under a raw edge and sewing to give a neat and quality finish.
Children will learn that stitches include running stitch, cross stitch and blanket stitch. Embroidery stitches, such as scatter stitches, satin stitch and back stitch, embellish fabric.

Children will learn that evaluation can be done by considering whether the product does what it was designed to do, whether it has an attractive appearance, what changes were made during the making process and why the changes were made. Evaluation also includes suggesting improvements and explain ing why they should be made.

Themes	
Food	
Innovation	Children will now continue to enhance their sewing skills by sewing a more complex product (pencil case). They will use a running stich and also create a hem. They will sew on a Velcro fastening. Children will also embroid an embellishment to add to their pencil case. Resilience, creativity and problem solving.
Broadening horizons	Children will now learn about the history of printing-block printing. They will learn about the famous British designer, William Morris.

Outcome	Character Traits	Stickability	WOW
To create a pencil case using William Morris inspired motif patterns.	Articulate Resilient	Recap key vocabulary and skills learnt	Begin the unit by showing the children a variety of William Morris' work.

Summer Year 4 - Design and Technology - Tomb builders (Ancient civilisations) \triangleq

Curriculum Objectives	Vocabulary			
- To learn about simple machines, including wheels, axles, inclined planes, pulleys and levers, exploring how they helped ancient builders to lift and move heavy loads.	Inclined plane	A ramp that assists moving heavy objects up and down heights.	lever	Used in machines to increase force
	axle	A rod passing through the centre of a wheel	gears	Rotating wheels that have teeth that slot together. They rotate.
	cam	A rotating piece in a mechanical linkage	pulley	A rope looped over a wheel which is used to lift heavy objects

Lessons Sequence

Substantive Knowledge / Key Knowledge

1. Can you identify the purposes
of simple machines?

2.Can you explore and use simple

 machines?3. Can you make a simple mahine?
4. Can you design and build a prototype machine to help the ancient Egyptian tomb builders move and lift heavy stones to make pyramids?
5. Can you share and evaluate your model?

Children will learn mechanisms can be used to add functionality to a model. Pulleys in cable cars or transport systems and cams in 3-D moving toys or pictures. Simple machines make physical jobs easier by changing the strength or direction of a force. There are six simple machines: pulley; lever; wheel and axle; wedge; inclined plane; and screw. Simple machines can be combined to make complex, compound machines.

Children will learn that mechanisms can be used to add functionality to a model. Simple machines make physical jobs easier by changing the strength or direction of a force

Children will learn about the characteristics of materials, such as rigidity, strength and smoothness will affect the success of a working model.

Children will learn that simple machines including pulleys, levers, wheels and axles and inclined planes can be combined to make a machine that can move heavy objects.

Children will learn that evaluation can be done by considering whether the product does what it was designed to do, whether it has an at tractive appearance, what changes were made during the making process and why the changes were made. Evaluation also includes suggesting improvements and explaining why they should be made.

Themes

Food				
Broadening horizons	Children will now learn about how people of 3 ancient civilisations designed 'original machines' to help them left stones for building pyramids and tombs.			
Innovation	Children will learn about gears. Children will now combine their knowledge of the different mechanisms to create a stone lifting machine.			
Outcome		Character Traits	Stickability	WOW
To create a stone lifting Egyptian tomb builder	machine to help the	Ambitious Articulate Resilient Curious	Recap key vocabulary and skills learnt	Share a video of different machine that make jobs easier

Links Across the Curriculum

History-ancient civilisations

Disciplinary Knowledge / Skills

Explore and use a range of mechanisms (levers, axles, cams, gears and pulleys) in models or products

Explore and use a range of mechanisms (levers, axles, cams, gears and pulleys) in models or products.

Choose from a range of materials, showing an understanding of their different characteristics.

Explore and use a range of mechanisms (levers, axles, cams, gears and pulleys) in models.

Identify what has worked well and what aspects of their products could be improved, acting on their own suggestions and those of others when making improvements.

Diversity in the Curriculum

- To learn about the ancient civilisation (ancient Sumer, ancient Egypt and the Indus Valley civilization) and the original inventors of pyramids and tombs.

Autumn Year 5 - Design and Technology - Eat the seasons (Dynamic Dynasties)

Curriculum Objectives

To learn about the meaning and benefits of seasonal eating, including food preparation and cooking techniques.

Vocabulary			
seasonality	Is the time of year when the har- vest or flavour of a type of food is at its best.	Food hygiene	Handling, preparing and storing food or drink in a way that best reduces the risk of illness from bacteria on the food.
steaming	To apply steam to cook	Nutritional value	well-balanced amount of the es- sential nutrients carbohydrates, fat, protein, minerals, and vita- mins in items of food
sautéing	To cook using a small amount of fat in a shallow pan	Micro-organisms	Living things that are too small to be seen with the naked eye

Links Across the Curriculum

Geography-seasons and food growth in the UK Anne-Sophie Pic - French

Lessons Sequence

1. What are the benefits of seasonal eating?
2.Which fruit and vegetables are currently in season?

What is the nutritional value of soup?
4. Can you design and make a healthy, seasonal soup for four people?
5. Can you prepare and cook the soups?
. Can you evaluate your peers soup?

Substantive Knowledge / Key Knowledge

Children will learn that foods can be prepared and cooked in different ways to achieve different results. Food hygiene is important to prevent the spread of disease-causing microorganisms. Seasonality is the time of year when the harvest or flavour of a type of food is at its best. Buying seasonal food is beneficial for many reasons: the food tastes better; it is fresher because it hasn't been transported thousands of miles; the nutritional value is higher; the carbon footprint is lower, due to reduced transport; it supports local growers and

Children will learn that a balanced diet gives your body all the nutrients it needs to function correctly. This means eating a wide variety of
Children will learn that sweet dishes are usually desserts, such as cakes, fruit pies and trifles. Savoury dishes usually have a salty or spicy flavour rather than a sweet one. Foods can be prepared and cooked in different ways to achieve different results. Food hygiene is im-

Children will learn that a balanced diet gives your body all the nutrients it needs to function correctly. This means eating a wide variety of foods in the correct proportions. Know what constitutes a healthy diet (including understanding calories and other nutritional content).

Children will learn that sweet dishes are usually desserts, such as cakes, fruit pies and trifles. Savoury dishes usually have a salty or spicy
Children will reflect on the recipes and cooking techniques they have used to make their soup. Children will review that a balanced diet gives your body all the nutrients it needs to function correctly. This means eating a wide variety of foods in the correct proportions. Know

Disciplinary Knowledge / Skills

Describe what seasonality means and explain some of the reasons why it is beneficial.

Evaluate meals and consider if they contribute towards a balanced diet.

Use an increasing range of preparation and cooking techniques to cook a savoury dish

Evaluate meals and consider if they contribute towards a balanced diet

Use an increasing range of preparation and cooking techniques to cook a savoury dish

Evaluate meals and consider if they contribute towards a balanced diet

Themes

Food \quad Children wil	Children will now learn about what foods are readily available and in what seasons.		
Broadening horizons			
Innovation			
Outcome	Character Traits	Stickability	WOW
To design and make their own soup.	Articulate Curious	Recap key vocabulary and skills learnt	https://www.bbc.co.uk/bitesize/topics/ zjr8mp3/articles/zb23p4j

Diversity in the Curriculum

spring Year 5 - Design and Technology

- Moving mechanisms (Sow, Grow and Farm)

2

Curriculum Objectives

- To learn about pneumatic systems. They experiment with pneu matics before designing, making and evaluating a pneumatic machine that performs a useful function.

culture	Beliefs and behaviours that are traditionally practiced by a group of people.	Jack	A device for lifting a heavy ob- ject
pneumatic	Using air to move	jackhammers	A pneumatic hammer or drill
mechanism	A tool used to control motion	Function	The purpose of the object

Lessons Sequence

1. Can you carry out a series of
experiments using pneumatic systems?
2. Can you make a box talk using a pneumatic system?

3. Can you make a pneumatic ma- chine?
4 Can you design a pneumatic farming machine?
5. Can you make a pneumatic farming machine?
6. Can you evaluate your pneumat- ic farming machine?

Substantive Knowledge / Key Knowledge
Children will learn that culture is the language, inventions, ideas and art of a group of people. A society is all the people in a community or group. Culture affects the design of some products. For example, knives and forks are used in the western world, whereas chopsticks are used mainly in China and Japan. The design of products needs to take into account the culture of the target audience. For example, colours might mean very different things in different cultures. A pneumatic system uses air to exert a force. This force is used in pneumatic jacks to lift vehicles, in paint sprayers to force paint out at high speed, in jackhammers to break up pavements and in train and bus brakes.
Children will test a product against the design criteria will highlight anything that needs improvement or redesign. Changes are often made to a design during manufacture. Pneumatic systems use energy that is stored in compressed air to do work, such as inflating a balloon to open a model monster's mouth. These effects can be achieved using syringes and plastic tubing
Children will learn that various methods can be used to support a framework. These include cross braces, guy ropes and diagonal struts. Frameworks can be built using lolly sticks, skewers and bamboo canes. Different mechanisms and systems can work together to perform a function. A strong and stable structure is necessary to support different mechanisms in a machine

Children will learn that Pneumatic systems use energy that is stored in compressed air to do work, such as inflating a balloon to open a model monster's mouth. These effects can be achieved using syringes and plastic tubing.
Pneumatic systems can be used to lift heavy loads, raise and lower platforms or soften a force by acting as a shock absorber.
Testing a product against the design criteria will highlight anything that needs improvement or redesign. Changes are often made to a design during manufacture. Materials should be cut and combined with precision. For example, pieces of fabric could be cut with sharp scissors and sewn together using a variety of stitching techniques. Design is an iterative process, meaning that once an initial prototype has been designed it is continually tested and improved until the final product is deployed. https://www.youtube.com/watch?

Children will learn that a focus group is a small group of people whose reactions and opinions about a product are taken and studied. Evaluations can be made by asking product users a selection of questions to obtain data on how the product has met its design criteria.

Disciplinary Knowledge / Skills

Use mechanical systems in their products, such as pneumatics. Ex plain how the design of a product has been influenced by the culture or society in which it was designed or made.

Test and evaluate products against a detailed design specification and make adaptations as they develop the product. Use mechanical systems in their products, such as pneumatics.

Name and select increasingly appropriate tools for a task and use them safely. Build a framework using a range of materials to support mechanisms.

Explain the functionality and purpose of safety features on a range of products. Use mechanical systems in their products, such as pneumatics.
Test and evaluate products against a detailed design specification and make adaptations as they develop the product. Select and combine materials with precision.
Survey users in a range of focus groups and compare results.

Diversity in the Curriculum

- To look at farming machines from around the world
- To look closely at British farming and how British food is produced

Display a number of farming materials and ask the children to discuss what they do

Curriculum Objectives

- To learn about how architectural style and technology has developed over time and then use this knowledge to design a building with specific features.

Lessons Sequence

Key Knowledge

Children will learn that culture is the language, inventions, ideas and art of a group of people. A society is all the people in a community or group. Culture affects the design of some products. For example, knives and forks are used in the western world, whereas chopsticks are used mainly in China and Japan. The design of products needs to take into account the culture of the target audience. For example, colours might mean very different things in different cultures. Many new designs and inventions influenced society. For example, labour-saving devices in the home reduced the amount of housework, which was traditionally done by women. This enabled them to have jobs.

Children will learn that the ancient Greeks developed the Classical form of architecture. They used columns to support roofs, which had three main orders; Doric, Ionic and Corinthian. Ancient Greek buildings were symmetrical and beautiful. Roofs had a triangular shaped part, called the pediment, and a wide horizontal part, usually decorated with a frieze, called the entablature. Greek buildings were usually made from limestone or marble
Children will learn that various methods can be used to support a framework. These include cross braces, guy ropes and diagonal struts. Frameworks can be built using lolly sticks, skewers and bamboo canes. Support, stiffness and stability can be created by using triangular shapes to create strong frameworks, columns to support roofs and overlapping brickwork patterns.

Children will learn that a pattern piece is a drawing or shape used to guide how to make something. There are many different computeraided design packages for designing products. Computer-aided design (CAD) is the use of specialised computer software to design objects. CAD can help designers to create better quality, clearer designs and make changes easily. CAD designs can also be made into objects using 3-D printers.
Children will learn that various methods can be used to support a framework. These include cross braces, guy ropes and diagonal struts. Frameworks can be built using lolly sticks, skewers and bamboo canes. Materials should be cut and combined with precision. For example pieces of fabric could be cut with sharp scissors and sewn together using a variety of stitching techniques.
Children will evaluate their ideas and products against their own design criteria and consider the views of others to improve their work

Themes

Food
Broadening horizons
Children will explore the ancient Greek architecture more in-depth
Children will now look at how buildings are designed and the considerations that take place in order to make strong, sturdy and longstanding buildings.
Innovation

Outcome	Character Traits	Stickability	WOW
To design a strong building	Ambitious Articulate Resilient Curious	Recap key vocabulary and skills learnt	Display different buildings from different countries and ask children to discuss why they think buildings are built differently in different countries e.g. hot, cold countries

Links Across the Curriculum
History-Ground breaking Greeks

Disciplinary Knowledge / Skills

Explain how the design of a product has been influenced by the culture or society in which it was designed or made. Describe the social influence of a significant designer or inventor

Explain how the design of a product has been influenced by the culture or society in which it was designed or made.

Build a framework using a range of materials to support mechanisms.

Use pattern pieces and computer-aided design packages to design a product

Build a framework using a range of materials to support mechanisms. Select and combine materials with precision.

Test and evaluate products against a detailed design specification and make adaptations as they develop the product.

Diversity in the Curriculum

- To explore Greek architecture
- To explore buildings from different countries

Curriculum Objectives

- To learn about processed food and healthy food choices. They-
plan and make meals a s part of a healthy daily menu, and evalu-
ate their completed products.

Vocabulary

recipe	provides information to prepare a dish, including ingredients quantities and a method. They may also contain nutritional information.	Yeast	is a leavening agent that makes bread rise.
Proving	means to leave bread dough, which contains yeast, to rise.	Kneading	is a technique used to make bread dough.
Manure	a mixture of animal's feces and bed- ding straw	Pest-control	Getting rid of different species that are considered harmful to humans and food
Hand-weeding	the act of removing wild plants from foplace where they are not wanted	Greengrocers	a shop which sells fresh vegetables and fruit to the public.

Lessons Sequence

1. What is a healthy lifestyle and a healthy, balanced diet?
2. Can you compare a processed product with a homemade version

3. What are the benefits of

 whole foods and the differences between whole foods and pro-4. Can you plan a healthy day's menu for an 11-year-old child? 5. In what ways is your meal balanced and heathy?
5. What modifications would you make to your recipe?

Substantive Knowledge / Key Knowledge

People's lives have been improved in countless ways due to new inventions and designs. For example, the Morrison shelter, designed by John Baker in 1941, was an indoor airraid shelter used in over half a million homes during the Second World War. It saved the lives of many people caught in bombing raids. Products and inventions can be compared using a range of criteria, such as the impact on society, ease of use, appearance and value for money. There are different categories of processed foods. Ultraprocessed foods have been through significant changes, have added ingredients and often a low nutritional value. A processed food is changed during preparation and includes processes, such as cooking, freezing, pasteurising, or the addition of ingredients. Pros of processed foods include convenience and availability. Cons include a lack of nutrients and unheallhy ingredients.
Children will learn that products and inventions can be compared using a range of criteria, such as the impact on society, ease of use, appearance and value for money. Ingredients can usually be bought at supermarkets, but specialist shops may stock different items. Greengrocers sell fruit and vegetables, butchers sell meat, fishmongers sell than homemade bread, including preservatives and artificial ingredients.
Children will learn that organic produce is food that has been grown without the use of man-made fertilisers, pesticides, growth regulators or animal feed additives. Organic
farmers use crop rotation, animal and plant manures, hand-weeding and biological pest control. Ingredients can usually be bought at supermarkets, but specialist shops may stock different items. Greengrocers sell fruit and vegetables, butchers sell meat, fishmongers sell fresh fish and delicatessens usually sell some unusual prepared foods, as well as cold meats and cheeses. information.

Children will learn that eating a balanced diet is a positive lifestyle choice that should be sustained over time. Food that is high in fat, salt or sugar can still be eaten occasionally as part of a balanced diet.
Children will learn that ingredients can usually be bought at supermarkets, but specialist shops may stock different items. Greengrocers sell fruit and vegetables, butchers sell meat, fishmongers sell fresh fish and delicatessens usually sell some unusual prepared foods, as well as cold meats and cheeses. Techniques include preparation techsell meat, fishmongers sell fresh,
niques, such as chopping, slicing, dicing, kneading and mashing, and cooking techniques, such as boiling, roasting, frying and baking.

Children will learn that design is an iterative process, meaning alterations and improvements are made continually throughout the manufacturing process. Evaluating a product while it's being manufactured, and explaining these evaluations to others, can help to refine it.

Links Across the Curriculum
Geography-children to look at different diets from around the world

Disciplinary Knowledge / Skills

Create a detailed comparative report about two or more products or inventions. Analyse how an invention or product has significantly changed or improved people's live

Create a detailed comparative report about two or more products or inventions. Follow a recipe that requires a variety of techniques and source the necessary Follow a recipe that require.
ingredients independently.

Explain how organic produce is grown. Follow a recipe that requires a variety of techniques and source the necessary ingredients independently.

Plan a healthy daily diet, justifying why each meal contributes towards a balanced diet.

Follow a recipe that requires a variety of techniques and source the necessary ingredients independently.

Demonstrate modifications made to a product as a result of ongoing evaluation by themselves and to others

Themes

Food	Children will now learn about the difference between healthy foods and processed foods
Broadening horizons	Children will now learn about traditional African dishes
Innovation	

Outcome	Character Traits	Stickability	WOW
To plan a healthy day's menu for an 11-year old	Ambitious Articulate Resilient Curious	Recap key vocabulary and skills learnt	Show flash cards of different meals. Children to discuss if they are healthy or not and why

Curriculum Objectives	Vocabulary			
- To learn about remarkable engineers and significant bridges, learning to identify features, such as beams, arches and trusses. They complete a bridge-building engineering challenge to create a bridge prototype.	engineer	a designer or builder of engines and structures	arches	a usually curved part of a structure that is over an opening and serves as a support
	bridge	a structure built over something (as a river or a railroad) so people can cross	trusses	A framework of metal or wood bars connects the two ends of the bridge. These bars fit together in triangular shapes.
	beams	a long heavy piece of timber or metal used especially as a main horizontal support of a building or ship	prototype	A simple model that lets you test out your idea

Lessons Sequence

1. What is a bridge? Can you name any famous engineer-bridge builders?

2. Can you describe the different features of bridges that make them

 strong?3. How can you make a strong paper bridge?
4. Can you use a strong bridge using triangles and different materials?
5. Can you design a bridge prototype?
6. Can you make a bridge prototype?
7. Can you evaluate your bridge?

Substantive Knowledge / Key Knowledge

Children will learn about how people's lives have been improved in countless ways due to new inventions and designs. For example, the Morrison shelter, designed by John Baker in 1941, was an indoor air-raid shelter used in over half a million homes during the Second World War. It saved the lives of many people caught in bombing raids. The significance of a designer or inventor can be measured in various ways. Their work may benefit society in health, transport communication, education, the built environment or technology. It may enhance culture in different areas, such as fashion, ceramics or computer games. Bridge structures have changed over time with innovations in design and materials. Significant bridges include the Menai Bridge, Clifton Suspension Bridge and Forth Bridge. Children should also explore bridge from other countries and look at how they have advanced the life of people in other societies.
Children will learn that products and inventions can be compared using a range of criteria, such as the impact on society, ease of use, appearance and value for money. The four main bridge types are the beam bridge, arch bridge, truss bridge and suspension bridge. They each spread forces in different ways to remain strong and stable.
Children will learn that strength can be added to a framework by using multiple layers. For example, corrugated cardboard can be placed with corrugations running alternately vertically and horizontally. Triangular shapes can be used instead of square shapes because they are more rigid. Frameworks can be further strengthened by adding an outer cover. It is important to understand the characteristics of different materials to select the most appropriate material for a purpose. This might include flexibility, waterproofing, texture, colour, cost and availability
Children will learn that triangles are a strong shape used by engineers to add strength to a structure. When a force is applied to a triangle, it is distributed down each side, making triangles difficult to distort or collapse

Children will learn that criteria should cover the intended use of the product, age range targeted and final appearance. Ideas can be communicated in a range of ways, including through discussion, annotated sketches, cross-sectional and exploded diagrams, prototypes, pattern pieces and computer-aided design.
Children will learn that it is important to understand the characteristics of different materials to select the most appropriate material for a purpose. This might include flexibility, waterproofing, texture, colour, cost and availability.
Children will learn that design is an iterative process, meaning alterations and improvements are made continually throughout the manufacturing process. Evaluating a product while it's being manufactured, and explaining these evaluations to others, can help to refine it.

Themes

Food

Innovation
Children will now advance their knowledge on how to strengthen, stiffen and reinforce more complex structures. They will learn about how structures can be strengthened by adding further layers.

Children will explore how bridge structures have improved the lives of different people around the world. Children will learn about more significant designer e.g. John Baker (Morrison shelter)
Broadening horizons

Character Traits	
Ambitious Articulate	
Resilient	

totype

Outcome

ren will create and evaluate a bridge pro-

Resilient Curious

Stickability
Recap key vocabulary and skills learnt

WOW

- children to be shown many bridges from around the world-discuss how they have improved lives and societies

Links Across the Curriculum

Geography-frozen kingdoms

Disciplinary Knowledge / Skills

Analyse how an invention or product has significantly changed or improved people's lives. Present a detailed account of the significance of a favourite designer or inventor

Create a detailed comparative report about two or more products or in ventions.

Select the most appropriate materials and frameworks for different structures, explaining what makes them strong. Choose the best materials for a task, showing an understanding of their working characteristics.

Select the most appropriate materials and frameworks for different structures, explaining what makes them strong. Choose the best materials for a task, showing an understanding of their working characteristics.

Develop design criteria for a functional and appealing product that is fit for purpose, communicating ideas clearly in a range of ways.

Choose the best materials for a task, showing an understanding of their working characteristics

Demonstrate modifications made to a product as a result of ongoing evaluation by themselves and to others.

Diversity in the Curriculum

- children to be shown many bridges from around the worlddiscuss how they have improved lives and societies

summer Year 6 - Design and Technology

Curriculum Objectives

Curriculum Objectives
- To learn about a range of simple sewing stitches, including ways of recycling and repurposing old clothes and materials.

Vocabulary			
Deconstruct	To take apart	Repurpose	Adapt for a different use
campaign	an organised course of action to achieve positive change.	Water proof	Something that keeps water out
Synthetic	Made by humans	Hem	A border of a cloth made by folding back an edge and sewing it down.
Running stitch	a simple needlework stitch consisting of a line of small even stitches which run back and forth through the cloth	sewing	Using a needle and thread to attach pieces of fabric together

Lessons Sequence

Substantive Knowledge / Key Knowledge

1. Can you explain how the make do and mend campaign influenced family life, fashion and the war effort in eneral?

2. Can you deconstruct an item of
clothing and investigate how they're
made, what materials are used and
:---
4. Can you repair a hole in an item of clothing?
5. Can you use recycled materials to create a new product?
6. Can you evaluate your final prod- uct?

Children will learn that people's lives have been improved in countless ways due to new inventions and designs. For example, the Morrison shelter, designed by John Baker in 1941, was an indoor air-raid shelter used in over half a million homes during the Second World War. It saved the lives of many people caught in bombing raids. In 1941, the British government introduced clothes rationing. This was to lim it the amount of labour and materials used in clothes production, so that it could be used to support the greater war effort. Make Do and Mend was a campaign run by the Ministry of Information to encourage people to recycle and repurpose their old clothes rather than

Children will learn that precision is important in producing a polished, finished product. Correct selection of tools and careful measurement can ensure the parts fit together correctly. Deconstructing garments identifies how they were made, the materials used and their properties.

Children will learn that precision is important in producing a polished, finished product. Correct selection of tools and careful measurement can ensure the parts fit together correctly. Hand stitches include running stitch, blanket stitch and whip stitch.

Children will learn that it is important to understand the characteristics of different materials to select the most appropriate material for a purpose. This might include flexibility, waterproofing, texture, colour, cost and availability. Pinning with dressmaker pins and tacking with quick, temporary stitches holds fabric together in preparation for and during sewing

Children will learn that pinning with dressmaker pins and tacking with quick, temporary stitches holds fabric together in preparation for and during sewing. Fastenings hold a piece of clothing together. Types of fastenings include zips, press studs, Velcro and buttons.

Children will learn that products and inventions can be compared using a range of criteria, such as the impact on society, ease of use, appearance and value for money.

Themes

Themes	
Food	
Broadening horizons	Children will learn about how British people repurposed clothing during WW2 and the benefits of this
Innovation	Children will now be introduced to further stitches that they could use in their sewing work. Children to learn about recycling fabrics.

Outcome	Character Traits	Stickability	WOW
To use recycled materials to make a new product.	Ambitious Articulate Resilient Curious	Recap key vocabulary and skills learnt	Present children with torn clothes and clothes with holes in and ask them to discuss how they would fix them

Links Across the Curriculum

History-Britain at war
PSHE - fast fashion-problem of today

Disciplinary Knowledge / Skills

Analyse how an invention or product has significantly changed or improved people's lives.

Select appropriate tools for a task and use them safely and precisely.

Select appropriate tools for a task and use them safely and precisely.

Choose the best materials for a task, showing an understanding of their working characteristics. Pin and tack fabrics in preparation for sewing and more complex pattern work.

Pin and tack fabrics in preparation for sewing and more complex pattern work. Use different methods of fastening for function and decoration, including press studs, Velcro and buttons.

Create a detailed comparative report about two or more products or ventions.

Diversity in the Curriculum

- Learning about WW2
people's lives.

